Mechanical Systems with Poincaré Invariance
نویسنده
چکیده
Some years ago Ruijsenaars and Schneider initiated the study of mechanical systems exhibiting an action of the Poincaré algebra. The systems they discovered were far richer: their models were actually integrable and possessed a natural quantum version. We follow this early work finding and classifying mechanical systems with such an action. New solutions are found together with a new class of models exhibiting an action of the Galilean algebra. These are related to the functional identities underlying the various Hirzebruch genera. The quantum mechanics is also discussed.
منابع مشابه
A Generalization of the Poincaré-Cartan Integral Invariant for a Nonlinear Nonholonomic Dynamical System
Based on the d’Alembert-Lagrange-Poincaré variational principle, we formulate general equations of motion for mechanical systems subject to nonlinear nonholonomic constraints, that do not involve Lagrangian undetermined multipliers. We write these equations in a canonical form called the Poincaré-Hamilton equations, and study a version of corresponding Poincaré-Cartan integral invariant which a...
متن کاملAsymptotic Stabilization of Euler-poincaré Mechanical Systems
Stabilization of mechanical control systems by the method of controlled Lagrangians and matching is used to analyze asymptotic stabilization of systems whose underlying dynamics are governed by the Euler-Poincaré equations. In particular, we analyze asymptotic stabilization of a satellite. Copyright c © 2000 IFAC
متن کاملExtension of the Poincaré Symmetry and Its Field Theoretical Implementation
We define a new algebraic extension of the Poincaré symmetry; this algebra is used to implement a field theoretical model. Free Lagrangians are explicitly constructed; several discussions regarding degrees of freedom, compatibility with Abelian gauge invariance etc. are done. Finally we analyse the possibilities of interaction terms for this model.
متن کاملQFT with Twisted Poincaré Invariance and the Moyal Product
We study the consequences of twisting the Poincaré invariance in a quantum field theory. First, we construct a Fock space compatible with the twisting and the corresponding creation and annihilation operators. Then, we show that a covariant field linear in creation and annihilation operators does not exist. Relaxing the linearity condition, a covariant field can be determined. We show that it i...
متن کاملNew concept of relativistic invariance in NC space-time: twisted Poincaré symmetry and its implications
We present a systematic framework for noncommutative (NC) QFT within the new concept of relativistic invariance based on the notion of twisted Poincaré symmetry (with all 10 generators), as proposed in ref. [7]. This allows to formulate and investigate all fundamental issues of relativistic QFT and offers a firm frame for the classification of particles according to the representation theory of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001